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Autocorrelation and Regularization in Digital Images
I. Basic Theory

DAVID L. B. JUPP, ALAN H. STRAHLER, MEMBER, IEEE, AND CURTIS E. WOODCOCK

Abstract—Spatial structure occurs in remotely sensed images when
the imaged scenes contain discrete objects that are identifiable in that
their spectral properties are more homogeneous within than between
them and other scene elements. The spatial structure introduced is
manifest in statistical measures such as the autocovariance function
and variogram associated with the scene, and it is possible to formulate
these measures explicitly for scenes composed of simple objects of reg-
ular shapes. Digital images result from sensing scenes by an instrument
with an associated point spread function (PSF). Since there is averag-
ing over the PSF, the effect induced in the image data by the instrument
(called regularization here) will influence the observable autocovari-
ance and variogram functions of the image data. This paper, the first
of two, shows how the autocovariance or variogram of an image is a
composition of the underlying scene covariance convolved with an
overlap function, which is itself a convolution of the PSF. The func-
tional form of this relationship provides an analytic basis for scene
inference and eventual inversion of scene model parameters from im-
age data.

Keywords—Remote sensing, digital image, spatial statistics, autoco-
variance, regionalized variable, variogram.

I. INTRODUCTION

VER THE past six years, the authors, separately and

together, have carried out a number of studies in re-
mote sensing that have utilized interpixel variance to ana-
lyze and model digital images. Three major lines of re-
search have been pursued. In chronological order, the first
was the development of geometric-optical models of con-
ifer forest canopies that were invertible using the variance
of brightness values within the pixels drawn from a uni-
form conifer stand [1], [2]. This line continues today in
the further refinement of the approach and its extension to
other types of canopies. Second was the examination of
spatial structure in remotely sensed images of real scenes,
including spatial covariance functions, variograms, and
examination of the behavior of interpixel variance as im-
ages are collapsed into ever-larger pixels through aver-
aging [3]-[6]. Third was the development of three-dimen-
sional models of self-shadowing within multilayer
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canopies and their application to modeling Landsat sig-
natures of vegetation cover types as a function of vege-
tation geometry and sun angle [7], [8]. As this work
emerged, two key concepts were developed as a guiding
schema: the discrete-object model of the scene [9], and a
taxonomy of scene models according to the size of the
objects and the size of the resolution cell of the sensor
[10].

Throughout this work, it became obvious that a coher-
ent mathematical foundation existed that was being drawn
upon directly or indirectly, sometimes with differing em-
phasis or perspective, and which provided a framework
and context for the differing lines of enquiry. This paper,
which is divided into two parts, attempts to provide that
foundation. Part I, presented here, develops the basic the-
ory in the context of remote sensing. Part II explores the
application of the theory to some simple models of scenes
and the digital images obtained from them.

A. Remote Sensing Context

In many applications of remote sensing and digital im-
age processing, it is reasonable to regard a scene as a spa-
tial arrangement of two- or three-dimensional objects su-
perimposed upon a background. In such a case, we can
consider a discrete-object scene model as an appropriate
abstraction of the scene [9]. In this type of model, the
scene includes one or more classes of objects, each of
which has a set of unique properties or parameters that
characterize it. As an example, an agricultural region in
the midwestern U.S. could be regarded as a two-dimen-
sional patchwork of rectangular objects (fields) of perhaps
one to three different basic sizes. The reflectance of each
field is determined by the state of the soil and crop within
it. A conifer forest presents a three-dimensional example.
Here, a forest scene might be modeled as a collection of
green cones of a constant shape but varying size that are
scattered randomly on a snow-covered plane and cast
shadows on the snowy background as well as on other
cones [1], [2].

The spatial structure of real scenes induces a measur-
able spatial structure in the images derived from them.
This occurs since distinguishable objects tend to be spec-
trally homogeneous and separable from other objects and
background. Adjacent points in the scene are conse-
quently more similar spectrally than might be expected on
average and the mean distance at which this ‘‘spatial au-
tocorrelation’” disappears is related to the size, spacing,
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and shape of the objects in the scene. The induced spatial
structure will also depend greatly on the spatial resolution
of the sensor as compared to the objects that are being
imaged. If the resolution cells are small with respect to
the objects, then it will be possible to identify the size and
shape of each object as well as to examine the brightness
values within it. We refer to this situation as the H-reso-
lution case [10]. As an example, consider a Landsat MSS
(multispectral scanner) image of the agricultural scene de-
scribed above. In the Landsat MSS system, each pixel
(picture element) is associated with a resolution cell of
79-m width in the scene. When fields are many times
larger than the resolution cell size, the image of each field
will contain many pixels. Therefore, adjacent pixels will
tend to fall within the same field, and hence be spatially
autocorrelated.

In contrast is the L-resolution case, in which the reso-
lution cell is larger than the objects within the scene. In
the L-resolution image, each digital value represents a
brightness for a combination of objects and background.
A Landsat image of the conifer forest scene provides an
example of an L-resolution model. Since the tree crowns
will be considerably smaller than the sensor’s resolution-
cell size, each pixel will include a number of objects
(trees). If the forest is relatively dense, adjacent bright-
ness values will be strongly correlated since the number
of trees within each resolution cell will remain more or
less uniform from one resolution cell to the next. How-
ever, if the forest is quite sparse, there may be consider-
able chance variation in the number of trees within each
resolution cell and thus adjacent-pixel correlation will be
reduced.

Clearly this situation will change as the spatial resolu-
tion of the sensor system changes. At the 20- or 10-m
resolution of the French SPOT satellite system, there will
be a strong interaction in the forest scene between the size
of the resolution cell and the size of the trees. At this
resolution, even a fairly dense, uniform forest will vary
considerably from pixel to pixel in a digital image. With
a large resolution cell size, such as the 1.1-km resolution
of NOAA’s advanced very high resolution radiometer
(AVHRR) instrument, averaging will be sufficiently great
that there will be little or no spatial variation in pixel
brightness even within a sparse woodland.

These simple considerations show how the spatial
structure and statistics of digital images will be greatly
influenced by 1) the size, shape, and density of objects in
the scene, and 2) the relationship between the size of the
objects and the size of the resolution cells in the digital
image of the scene.

The study of spatial structure in images can be ap-
proached from two directions. First, it is possible to de-
fine various parameters that measure spatial structure and
calculate them for real images [3]. With an understanding
of such measurements and how they interact with various
types of scenes as imaged at different resolutions, it is
possible to gain considerable insight into the influence of
spatial structure on the information extraction process [4].
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Second, it is possible to adopt a scene-modeling ap-
proach, beginning with simple scenes of discrete elements
and deriving their intrinsic spatial structures and the spa-
tial structures they induce in images taken from them. This
paper, the first in a series, approaches the problem from
the second perspective. It provides a proper mathematical
framework for consideration of digital images, and de-
rives results that can be used to describe 1) the autocor-
relation structure of images composed of discrete objects,
and 2) how that structure is influenced by regularization—
a process of spatial averaging that arises when a sensor
makes a measurement that is integrated over a finite area
of the scene. Further articles will move to models and
simulations of simple, theoretical scenes, and then ex-
amine the spatial structure of real images.

II. THEORY OF SPATIAL COVARIANCE
A. Regionalized Variables

Consider the scanning and imaging of a scene by a re-
mote-sensing device. The output of the scanner will be a
set of measurements, each of which is associated with a
spatial position. In mathematical terms, these measure-
ments can be considered as values of a ‘‘regionalized
variable’’—brightness as a function of spatial position. An
extensive body of theory devoted to the study of spatial
pattern and variation in regionalized variables now exists.
It has been developed through various applications. in-
cluding those of geostatistics, which is the estimation of
geological parameters from spatial samples; stereology,
the study of projections and sections of multidimensional
objects into spaces of lower dimension and image anal-
ysis, or the study of shapes and structures in two-dimen-
sional images.

This paper borrows much from the theory of regional-
ized variables [11], especially as developed by Matheron
[12]-[14] and Serra [15]. In this sense, our treatment is
not new—these authors have gone over the same ground,
albeit in a much more abstract fashion. However, our
treatment has been developed with specific reference to
digital imaging of objects on the earth’s surface. As such,
it presents a concrete foundation for a proper mathemati-
cal description of the spatial structure of digital images
and the inference of scene structure from image data.

B. Stochastic Nature of the Scene

For application of a mathematical theory, we will adopt
a stochastic view of the landscape and its spatial structure.
In this approach, we assume that there are underlying
properties and processes of the landscape that produce
many similar scenes. For example, consider an agricul-
tural area in which the given topography, soils, climate,
and sociocultural factors influence the sizes and shapes of
fields and the crops they contain. An individual scene
drawn from such a region will be unique, but will also be
similar to all other such scenes in many respects.

Mathematically, this can be stated more formally as ap-
plied to digital images. Consider a spatial random func-
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tion f that generates radiance values f(x) as a function of
spatial position x. (Here x is regarded as a vector vari-
able—which is in this case a pair of image coordinates. )
A digital image, which expresses radiance as a function
of spatial position, may be regarded as a single realization
of such a function—and, for the purpose of analysis, as a
regionalized variable [16], [17].

Consider now summary statistics (such as the mean,
observed spatial covariance, etc.) that are derived from a
digital image. We can adopt the deterministic view that
these are unique and intrinsic to the image only, or we
may adopt a stochastic view that such statistics also char-
acterize the properties of the underlying spatial function.
Obviously, if we want to infer something about the spatial
properties and processes of the landscape, we will of ne-
cessity assume the latter view. Mathematically, two as-
sumptions are required: spatial stationarity, which as-
sumes that the parameters of the underlying function do
not vary with spatial position; and ergodicity, which as-
sumes that spatial statistics taken over the area of the im-
ages as a whole are unbiased estimates of those parame-
ters. These assumptions will be introduced at appropriate
points in the following exposition.

C. Covariance for Random Functions

The question arises as to what statistics are sufficient to
characterize the spatial random function, particularly
when only an image of a single realization of it is avail-
able. When the underlying scene is an image model, we
also wish to establish what statistics are sufficient to char-
acterize the parameters of the model. In the following
work in this and later papers, we have made extensive use
of second-order spatial statistics, such as the spatial co-
variance and variogram. The effectiveness of this statistic
for estimating parameters of image models will be estab-
lished in later papers. Here, we examine its basic prop-
erties.

Since covariance describes the behavior of the function
at one point relative to its behavior at another point, it
can also be regarded as an autocovariance. The
(auto)covariance between two values at points x; and x,
in N-dimensional space (R") induced by the random
function f(x) is

Covy (x1. x5) = E{[f(x)) = m(x))]
[ f) - m)]) ()

In this expression, m(x) = E{ f(x)} is the mean of the
process at x, E{ } denotes the expectation, and the ex-
pectations are taken as averages over the ensemble of re-
alizations of f at the fixed points x; and x».

Introducing a second random function g (x), the cross-
covariance between points x; and x, induced by random
functions f at x; and g at x, is similarly defined as

Covy, (x), x2) = E{[f(xl) - mf(xl)]

glrn) = mx)]} (2)
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This statistic, which is not symmetric in x; and x;, is im-
portant in multichannel images where image spatial anal-
ysis considers the full spatial covariance matrix to char-
acterize the underlying processes. For simplicity,
however, this paper will be concerned almost entirely with
single functions.

Consider the case in which m(x) is independent of x
(i.e., is stationary throughout R") and Covy (xy, x3) de-
pends only on the relative position & of the two points,
i.e., h = (x, x,). We shall denote this type of covariance
as

Covy (h) = E{[ f(x) = m][ f(x + h) = m]}. (3)

9

In this case, fis ‘‘wide-sense’” stationary. In geostatis-
tics, a more relaxed form of stationarity is usually as-
sumed and, rather than the covariance function, the re-
lated variogram function is used to characterize spatial
structure

Vih) = E{[f00) = fe+ W]} (@)

The variogram simply describes the average squared dif-
ference between values as a function of the distance be-
tween them. For the two-function case, the cross-vario-
gram is similarly defined as

Vio(h) = E{[£(x) = f(x + W)][8(x) = g(x + )]},
(5)

These functions are closely related to the covariance. If
the variance of the random function is finite (i.e., the
function has a mean and is wide-sense stationary), some
simple manipulation shows that

V;(h) = 2[Cov; (0) — Cov; (h)] (6)
Vf-g(h) = Z[COV/ZX (0) — Covy, (h)] (7)

If the variogram is used, the assumption that m (x) (the
““trend’” of the spatial function) does not vary may be
relaxed. All we need assume is that m (x) does not change
significantly within the range h. In this case the region-
alized variable is said to be ‘‘stationary in increments.’’
The stationarity of the variogram, however, is a funda-
mental assumption in geostatistics and is usually appro-
priate in digital image processing. This is because im-
ages, although not wide-sense stationary due to scan angle
effects, etc., can generally be regarded as stationary in
increments.

When the cross-variogram between two functions is
zero, the functions are said to be fully spatially indepen-
dent. In this case, it follows that the covariance and var-
iogram functions induced by the sum f + g are simply the
sum of the respective covariance and variogram func-
tions. That is, for f and g spatially independent

Covy.,(h) = Covs(h) + Cov, (h). (8)

This notion can be used to construct models for covari-
ances as the sum of spatially independent structures or as
the result of linear combinations of spatially independent
random functions. It will be seen, however, that most of
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the more realistic models for images cannot be easily in-
terpreted as the sum of spatially independent structures.

III. COVARIANCE AND OVERLAP BETWEEN SETS
A. Covariance for Random Sets

Thus far, our treatment has dealt with definitions of
means, covariances, and variograms for random spatial
functions. We now turn to consider these concepts as ap-
plied within and between spatial subsets of R". This is
important for two reasons. First, in the discrete-element
scene model, objects have associated sizes and shapes.
Since we will assume that the objects and background are
internally homogeneous, the numerical difference be-
tween two points will be zero when they both fall within
objects with the same spectral values, and some larger
fixed values when they fall on object and background.
Mathematically, this may be treated by defining a random
family of subsets of R" with size and shape properties
characteristic of the object and examining the covariance
structure that exists for the field containing the subset.

A second reason for examining the properties of spatial
subsets is to understand the effects of regularization. In a
digital image, the brightness value associated with a pixel
is an integration of radiance over the spatial response
function, or point spread function (PSF), of the instru-
ment. The spatial area bounded by the line marking where
the PSF falls to half of its peak value is called the effective
instantaneous field of view (EIFOV), or optical pixel, for
the instrument. The EIFOV is clearly a subset of R*. At
this point, we will regard the instrument as having perfect
response in that radiance is integrated equally over the
EIFOV and no radiance enters from outside. That is, the
EIFOV is the IFOV.

In mathematical terms, we can regard the IFOV or a
discrete object as a random set (X ) within a two-dimen-
sional field (Fig. 1(a)). Consider a point x within some
space T of R". Associated with any realization of the ran-
dom set (X)) is an indicator function Iy (x)

Ko = |

I, xisin X )
0, else.

If we consider many random placements of the set X onto
the field T, we can define m(x) as

m(x) =Prob {xe X} = E{Ix(x)} (10)

where {x € X } denotes the event that the realization of
X contains the point x. If all placements are equally likely,
m(x) will be uniform over T and it will suffice to use m
alone to refer to this probability.

To develop the concept of spatial covariance for the
random set X, consider another point x + h located 7 away
from x (Fig. 1(a)). We will define the covariance of the
random set X as the covariance of the indicator functions
for x and x + h. Substituting in (3)

Covy (h) = E{[Ix(x) = m][Iy(x + h) — m)}
= E{Iy(x) Ix(x + h)} - (11)
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(a) (]

Fig. 1. Diagrams of simple sets. (a) Points X and X + / within region X.
(b) Hlustration of X N X_, (stippled area). If a point falls within the
stippled area (e.g., ¥), then it will fall within X after a translation by
distance h. If a point falls outside the stippled area (e.g., Z), then it
will fall outside of X after translation by /.

Let us explore this further in the case where X is an object
of fixed size and a realization is a random placement of
X. If h is larger than the width of X, then the probabilities
that X encloses x and that X encloses x + h will be in-
dependent. Thus, the expectation of the product will be
the product of the expectations, and

Covy (h) = E{Iy(x)} E{Ix(x + h)} — m’
2 =0. (12)

If A = 0, then x and x + h coincide, and E {Iy(x) Ix(x
+0)} =E{ [Iy(x)]*}. However, IX(x) is an indicator
function with values 1 or 0. Thus, Iy (x)* = Iyx(x), so

E{Iy(x) Ix(x + 0)}

Covy (0) =m — m* = m(1 — m).

=m- -m—m

m

(13)

Thus, Covy (k) will range between m(1 — m) and O.
The covariance can also be expressed in random set
form, as

Covy (h) = Prob {xe Xandx + he X} —
=Prob{xeXNX,}-m (14)

where X N X_, denotes the intersection of X with X
shifted by the increment —#A. This form is illustrated in
Fig. 1(b) where the stippled area corresponds to X N X_,.

We may also define a variogram function for the ran-
dom set X as

= E{[Ix(x) = Ix(x + h)] g
2(Covy (0) — Covy (h)]

2m(1 = m) — Covy (h)]
2m(1 — m) — 2 Covy (h).

(15)
In random set form

Vy(h) = Prob {xe X N X<, } (16)
where X, denotes the complement of X_,, (Fig. 2(a)).

B. Functional Covariances and Set Overlap Functions

In most cases, the images with which we work are, at
best, a single realization of the random process consid-



JUPP et al.. AUTOCORRELATION AND REGULARIZATION 1

(b)

Fig. 2. More set diagrams. (a) X N X<, (stippled area) for set X translated
—h. (b) X N Y_,. Kyy(h) is the overlap area indicated by the stipple.

ered thus far. The underlying discrete object scenes, for
example, may be deterministic placements of objects that
can only be modeled in this way as realizations of some
random process. We must therefore relate the properties
of the random regionalized variable to those of a realiza-
tion of it.

If T is a subset of the space R" and f(x) is a function
defined on T—which may be regarded either as a deter-
ministic set function or as a realization of a random func-
tion

(17)

3
Il

Srf(x)d,xl/Mes (T)

Ci(h) (18)

STf(x)f(x + h) d\x‘/Mes (T)

v = | 1) = 7+ 0T dls] /Mes (1) (19)

may be defined and used as functions characterizing the
function f within T. Mes (T ) is the Lebesque measure of
T, defined as

[ alel = | mdxl Qo)

where I (x) is the indicator function for T. Mes (T'), in
the case of a two-dimensional image, thus corresponds to
T’s area. The notation d|x| represents the infinitesimal
volume element of integration dx, dx,, . .., dx,.

The functions m and C;(h) can, as measures, be asso-
ciated with a stochastic function for which they are the
true mean and covariance [18], and under certain other

Mes (T) =
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assumptions, amounting to ergodicity of f(x) [19], the

spatial statistics for a single realization of f(x) form un-

biased estimates for the underlying covariance and mean.
For deterministic sets, the functions

Mes (X) = Sxdlxl = STIX(x)d‘ﬂ (21)

Ky(h) = Mes {X N X_,}
Vy(h) = Mes {X N X<}

(22)
(23)

play similar roles to the spatial mean, autocovariance and
variogram for deterministic functions. Ky (k) is espe-
cially important in this work. However, it will not be
called a covariance, but rather the set overlap function. In
our two-dimensional example, these quantities corre-
spond respectively to the area of X, the overlap of X with
itself shifted by —h (stippled portion of Fig. 1(b)), and
the area of X not covered by X shifted —#4 (stippled por-
tion of Fig. 2(a)).

As with random functions, it is possible to define the
equivalent of a cross-covariance for two deterministic sets
X and Y as

Kxy(h) = Mes {X N Y_,}. (24)

This function measures the overlap between X and Y after
shift —h (Fig. 2(b)).

As with the spatial moments of functions, the (comput-
able) overlap function provides an estimate for the co-
variance function induced by a random set function of
which X is a realization. This estimate, however, only
makes sense when the random set function has stationarity
and ergodicity properties, which a single finite set does
not have.

In general, when we have a finite realization of discrete
sets in the plane as a scene model (such as agricultural
fields or forest stands), the covariance is computed by as-
suming the sets to be observed in a bounded set T (the
remotely sensed scene in our case) and using

Mes {(XNT)N (X, NT)} [Mes{XNT}
Mes (T) _{ Mes (T) }

(25)
as an estimate for the underlying covariance function

Prob {x e X N X_,} — m*. (26)

Unlike the covariance, the overlap function is defined
for a single, finite set in the plane. In the papers following
this one, we will use models in which the covariance of
an image model may be defined in terms of the overlap
functions of its discrete components. These ‘‘Boolean’’
models [15] will be based on definitions of this section.

C. Covariance Between Sets

If A and B are two fixed sets in R", the covariance be-
tween them, induced by Cov, (x,, x,) with x, contained
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Fig. 3. Two random sets A and B containing points x and y.
in A and x, contained in B is
Covs (A, B) = SA . Covy (xy, xp) d|x; |
X

- d|x,|/Mes (A) Mes (B). (27)

This situation is diagrammed in Fig. 3. Cov; (A, B) can
be thought of as the average covariance between all points
x within A and y within B. When A and B are identical,
then the result is the variance of the set A

Covs (A, A) = SAXA Covy (xy, x;) d|x,]

 d|x;| /Mes? (4)
- (28)

where x| and x, are two points within A.
If the underlying covariance is stationary (or rather de-
pends only on increment /), it may be shown that

Cov; (A, B) = SRN Kap(h) Covs (h)

- d|h|/Mes (A) Mes (B). (29)

The covariance between the two sets thus depends on the

product of two functions: the covariance function Cov,

(h), and the overlap function K,z (k). Their product will
be positive only when Kjp(h) is nonzero—i.e., when
there is overlap between the two sets at distance h—and
when there is a nonzero covariance at that distance. When
A and B are the same set, it follows that

Cov; (A, A) = 0} = SRN K4 (h)

- Covy (h) d|h|/Mes* (A).  (30)

The covariance and overlap functions occurring in this in-
tegral are illustrated in Fig. 4.

Expression (29) is the fundamental relation between the
set overlap function and a covariance between sets in-
duced by a random function. It is at the base of much
statistical estimation in geostatistics and has some inter-
esting interpretations.
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Cov,(x.y)

Kalx,y)

(b)

Fig. 4. Sketches of covariance and overlap functions in two dimensions.
Axes are x and y coordinates resolved from k. The origin is & = 0. (a)
Covariance function for a regionalized variable, modeled as a negative
exponential function. Dashed line, contour at value near 0. Values are
significantly greater than zero only within the contour. (b) Overlap func-
tion. A square-based pyramid is shown, which is appropriate for a square-
shaped set overlapping (without rotation) with itself.

D. Normalized Overlap Functions
Let

Hyp(h) = Ksp(h)/Mes (A) Mes (B) ~ (31)

be a normalized overlap function for the deterministic sets
A and B. It is, in fact, identical with the distribution func-
tion for the lengths of vectors & with end points in A and
B, respectively [20]. The function H,(h), defined simi-
larly using K4 (h), is identical with the distribution func-
tion for the lengths of vectors with both ends in A. The
normalized overlap functions Hyg (%) and H, (h) have unit
mass, and thus the fundamental relation between set co-
variance and covariance between sets (29) becomes

Cov; (A, B) = SR H,g(h) Cov, (h) d|h]| (32)

Cov; (A, A) = 0 = SRV Hy(h) Cov, (h) d|h|. (33)
Hence, the set covariance or overlap function Hyg(h)
transforms the covariance function Cov, (k) into an in-
duced covariance between the sets.

The sets A and B are, at this point, arbitrary sets. They
could, for example, be two management zones (e.g.,
states) from a map, so that Cov; (A, B)) would represent
a covariance between the zones induced by a regionalized
variable—such as population density. However, in the
context of remote sensing and images, A and B are usu-
ally two instantaneous fields of view that are similar in
size and shape but are shifted a distance 4 from one an-
other. This situation leads to some especially useful forms
of (32) and (33).

E. Convolution and Shifted Set Functions
The form of the deterministic (auto)covariance function

Ci(h) = Srf(x)f(x + h) d‘x|/Mes (T) (34)
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in the case where f(x) and f(x + h) vanish outside T is
that of a convolution integral between f and its conjugate
f normalized by Mes (T'). Algebraically this can be writ-
ten

Cr(h) = f* f(h)/Mes (T) (35)
where the convolution operator * is defined by
fren = | e -mald G6)

and f (x) = f(—x) when fis real. The properties of con-
volution are well established in many texts [19], [21] and
the Fourier domain properties are of special value for
many problems.

For sets, if I,(x) is the indicator function for A and
Ig(x) is the indicator function for B, then the function
H,p(h) defined above may be written

Hug(h) = SRN Iy(x) Ig(x + h) d|x|/Mes (A) Mes (B)

I, = Ig(h) /Mes (A) Mes (B)
Mes (A N B_,)/Mes (A) Mes (B).

I}

(37)

Now consider the case in which A and B are the same
set Z, but are translated by distance p. This case includes
the situation in which Z is the IFOV of a remote-sensing
instrument and A and B are thus two successive fields of
view separated by a distance p. In this case it is possible
to show for a translation of —p that

Hzz (h) = Mes (Z N Z_;,.,))/Mes® (Z)

= Hy; ,(p) = Hz(p + h) (38)
or, in convolution notation
lz*iz_p(h) = Iz*iz(p + h) (39)

It follows from (32) that

Cov,(Z,Z_,) = SRN H(p + h) Covs(h) d|h|
= Hyz * Cov; (p). (40)
And, substituting from (39)
Covi(Z, Z.,) = (I; * I;) * Cov;(p)/Mes’ (Z). (41)

As before, a variogram function between sets can be de-
fined and in this case we have

Vi(Z,Z_,) = Cov;(Z,Z) — Cov;(Z, Z_,)
=03 — Cov,(Z,Z_,)
= 07 — Hz * Cov;(p). (42)

Equation (40) may be developed further when the model
is defined in the plane ( R?) and the covariance is isotropic
(that is, depends only on r = |h|). Then, by changing
variables to polar coordinates (x = r sin @, r cos 0), it
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follows that
Cov/ (2,2 ) = Cup) = |, rTap.r) €y ar
(43)
where

Ty(p, 1) = S:{ Hz(x + p) df (44)
and Hy is the overlap function for Z normalized so that as
|Z] = 0, Cz(p) = C(p). Thatis
S:rgi Hy(x) db dr = 1. (45)
This form for the covariance allows a particularly con-

venient form for the regularized variance to be developed
for isotropic covariances. That is

o’ S rT,(0, r) C(r) dr
0

i

So o (r) C(r)dr. (46)
In this case, ¢ (r) is the distribution function for lengths
r in Z and may be explicitly computed for a variety of
shapes for Z, as shown by Garwood [22]. The covariance,
however, is quite complicated and must usually be com-
puted numerically—and is often better computed using
(40), even for isotropic underlying covariances.

IV. REGULARIZATION OF SCENES AND EXAMPLES OF
SIMPLE COVARIANCE FUNCTIONS

A. Regularization of Scenes

Equation (41) provides the basis for understanding the
effects of regularization on the covariance structure of an
image, and is known as Matheron’s Theorem [12]. From
the equation, two functions are involved. One of these is
the underlying covariance function Cov,, which is taken
to be an intrinsic property of the scene. The second is a
function derived from the area over which regularization
occurs—in this case, Iz * I ,(h) or Hz(h), where the
convolution describes the overlap of the regularizing area
with itself at distance 4. The theorem then states that the
covariance induced by f between a set Z and the same set
translated a distance p is the value at step p of the con-
volution between the underlying covariance induced by f
and the normalized set overlap function associated with
Z—that is, H; (h).

The immediate application of this to remote sensing oc-
curs when the scene is modeled as a realization of a re-
gionalized variable and the image is taken to be a regular
set of samples from the scene integrated over pixels that
are shifts of a basic IFOV (Fig. 5). In this case, the mea-
surable statistic, i.e., covariance between pixels over the
extent of the image (which is taken to be the set T), is
an estimate for the regularized covariance. This is related
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Fig. 5. Discrete-element scene as imaged by pixels that are integral shifts
of a square IFOV.

directly with the underlying covariance Hz (h) and Math-
eron’s Theorem.

It is useful, at this point, to examine some simple over-
lap functions (Hyz) of this nature. The one-dimensional
case is perhaps the simplest. Consider an indicator func-

tion
1,
IL(x) =

0, else.

f—a<x=<a
(47)

The overlap function associated with the interval a for a
distance h will be

Koh) = I Tg(h) = | 2e(oe) (s + )

_ {Za —t]. |t =a

0 > a (48)

This function is illustrated in Fig. 6. Iy (x) is a ‘‘boxcar’’
centered on x = 0, Iy (x + k) is a similar boxcar centered
on —h, and Iy * Iy (h) is the integral of the indicator func-
tion in the area of intersection between the two. The re-
sulting K, (h) is a triangle with base 4a and height 2a.

A two-dimensional situation may be more relevant to
image models. Consider a circular regularizing area of ra-
dius a with an indicator function

IL(x) = {1, it x| <a

49
0, else. (49)

This function has the shape of a discoid (Fig. 7). The
convolution of the indicator function is the volume of
overlap between the discoid centered at x = y = 0 and at
—h. Some simple geometry shows this function to be
A .
K,(|h]) == (6 — sin 6) (50)
T
where A is the area of the regularizing disk ( = 7a’) and
cos (/2) = |h|/(2a).

I I
-a h a —-a-h -h a-h
(a) (b)
I K, (h)
2a-h3 |
A7
%
I 77 ﬂ
-a-h -a —'h a-h a -2a ‘ 2':
() (d)

Fig. 6. Convolution of indicator function, one-dimensional example. (a)
Indicator function for length a. The function has height unity. (b) Indi-
cator function shifted —h. (c) Overlap of function with itself shifted —h.
Convolution [, * 7.‘.(h), which has area 2a — h, is hatched. (d) Overlap
function K, (#), which has maximum value 2a.

)

(©) (d)

Fig. 7. Illustration of overlap function for a disk. (a) Indicator function
drawn as a discoid. Height of discoid is unity. (b) Indicator function
shifted by —h. (c) Overlap of function with itself shifted —h. Convo-
lution Iy * Iy (h) is shown by hatching. (d) Overlap function Ky (/).

A zero-one indicator function implies in a remote-sens-
ing situation that the sensing device has a square-wave
response function, integrating all energy equally within
the IFOV and rejecting all energy outside of it. In the case
of a real sensor, this is probably an unrealistic assump-
tion. Suffice it to say, however, that, given a real modu-
lation transfer function, it is a straightforward modifica-
tion to derive, at least numerically, a solution for the
overlap function.
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B. One-Dimensional Exponential Case

In one dimension, regularization occurs when an un-
derlying random function is known, or measured, by in-
tegration over finite intervals. Data loggers, or integrating
instruments such as rain gauges, provide examples where
time series of somewhat random events are integrated (re-
gularized) and where the relationship between the under-
lying covariance and the covariance between the inte-
grated measurements is of great importance.

A common form of covariance function for time series
of this kind is the exponential covariance

C(h) = g% (51)

where o describes the dependence of covariance on dis-
tance. The data, however, only give estimates for the in-
tegrated data and therefore the regularized covariance
ot %
C,(h) = o S K,(h+r)ye!"ar (52)
a —oo
where K, (k) is the function shown in Fig. 6(d). This in-
tegral is computable, leading to expressions for the re-
gularized variogram and total variance of the form

2
o
Va(l’l — 0(21 _ 1 - e*?.cxa e2aa -1 e*zx\hl
) ——(2aa)2( ¢ )
(53)
where
5 ,
2 g 1 —2aa
=—|1-—(1-¢" 54
R L (] B

when & > 2a, which is the practical case. Significantly,
for h > 2a, V,(h) has the form of an exponential with
the same exponent so that even with regularizing, the form
of the covariance and variogram is still an exponential of
the same general type.

Fig. 8 shows the behavior of V,(h) as a function of the
integration interval (a). As the integration increases, the
global variance o, decreases and the variogram increases
more slowly to its final level. The graphs are stepped to
show the practical effect of regularization on data availa-
bility. Fig. 9 presents a plot of log o against log a. For
small a, o2 is near ¢” and falls slowly, showing spatial
correlation. As a becomes large, the variance reduces as
1 /a, as would be expected of an uncorrelated random
function, which in this case means that the structure is
lost.

The significance of these plots is that all of the variation
they illustrate has been created by the effects of regulari-
zation, or, for remotely sensed data, by the integration of
the scene radiance with the underlying exponential co-
variance into pixels with a finite IFOV.

C. Two-Dimensional Exponential Case

In two dimensions, the exponential covariance is again
a common model for two-dimensional spatially correlated
fields. Here, regularizing corresponds to integration over

1.2 v - T T T T
1.0 Silt
o>
.8t
a=.5
;. BF P a=1

4 —_— a=2

2}

0 N . L " L

(] 1 2 3 4 5 6 7 8 9 10

h

Fig. 8. Variogram for the one-dimensional exponential model as regular-

ized for various intervals a. (a = 0, unregularized variogram; o-,
a=1.)

PR
Al 2 4 6 81 2 4 6 8 10

Fig. 9. Log-log relationship between o2, the regularized variance, and a.
the regularizing interval, for the one-dimensional exponential model.
Horizontal line—unregularized variance (¢ = 0). (6, a =1.)

an area such as a disk (Fig. 7) or a square {Fig. 4) and
using (43). In this case, even for simple isotropic models
like the exponential, the integral needs to be evaluated
numerically.

For the simple exponential covariance C(h) = ¢ " and
variogram V(h) = 1 — e™"", we have plotted graphs in
Fig. 10 showing V,(h) as a function of a, where a is now
the radius of the regularizing disk. Similarly, in Fig. 11
we have plotted log o, against log a which again shows
how for large a the behavior of the variance is similar to
that of an uncorrelated random function. However, for
small a, the behavior is not.

Again, the plots show how the effect of averaging over
the IFOV in remotely sensed data will introduce signifi-
cant changes in the covariance derived from the data rel-
ative to the underlying covariance. A comparison between
Figs. 8 and 9, and Figs. 10 and 11, also shows how di-
mensionality is significant as well. Integration along lines
behaves differently from integration over a disk, even for
isotropic covariances. Geometric effects will become even
more significant when the data involve an oblique (pro-
jective) IFOV of a three-dimensional scene.

h
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Silt

0 1 2 3 a4 5
h
Fig. 10. Variograms for the two-dimensional exponential model with
varying degrees of regularization by a disc of radius a. (¢ = 0, unre-
gularized variogram; o*. a = I.)

1.2 - — T

3 4 5 .6 8 1 2 3 4 5 6 8 10

Fig. 11. Log-log relationship between regularized variance o, and the ra-
dius a of the regularizing disk for the two-dimensional exponential model.
Horizontal line—unregularized variance (a = 0). (o>, a=1.)

D. Other Models

Similar plots and studies on their properties may be de-
rived for a variety of isotropic covariance functions. Three
of these are worth presenting briefly. First is the Bessel
covariance [23]

C(h) = o*hK\(ah) (55)

which provides a natural generalization of the exponential
covariance to two dimensions. Another is the well known
‘*spherical’” covariance [15]

ror

C(h) = J"zl_‘ B %% i <%ﬂ [l <D
i@’ |h| > D

which is the overlap function for a sphere of diameter D
and has been used as a model for both one- and two-di-
mensional covariances in geostatistics. Last is the “‘in-
dependent structures’” model (see Section 1I-C) consisting

of a linear combination of N exponential models

C(h) = o* 2 we @ (56)

i=1
where each w; > 0, L w; = 1,and a; > Ofori = 1toN.
In this model, independent regionalized variables with
short “‘range’” and long ‘‘range’” can be combined to
model almost any observed covariance [24].

At this stage, it is clear that the functional relationships
between the parameters of an underlying covariance and
the (observed) regularized estimate of the covariance may
be computed explicitly. The examples given above, how-
ever, were mathematical and not derived from a model
(in the case of remote sensing) for the scene being im-
aged. For a class of scene models, it is possible to use the
methods developed here to derive the scene covariance
and the effects of regularization as a function of the pa-
rameters (e.g., size and spacing of discrete objects) de-
scribing the scene. When this occurs, (41) forms the basis
for the inference of parameters of the scene models. The
development of such scene models is the basis for Part I
of this series of papers.

V. CONCLUSION

In this paper (Part I), we have examined how the co-
variance and variogram, which describe the spatial struc-
ture of a scene, are modified when the scene is imaged by
integration into pixels with finite EIFOV. We have also
established a framework for estimating covariances of set
functions and between sets. This framework was used here
for modeling the effect of pixel size on the underlying
covariance but can also be used to model the underlying
covariance of scenes composed of discrete objects.

Together, these results allow us to develop a theory of
scene parameter inference from remotely sensed data.
Firstly, relationships must be established between the
scene parameters and the underlying covariance structure.
Secondly, the effect of the infinite IFOV must be estab-
lished. There follows a complete model for the relation-
ship between scene parameters and image data, which will
be further investigated for simple scene models in Part I
of this paper.
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